Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 312: 109834, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343530

RESUMO

Merozoite surface antigen-1 is a glycoprotein expressed by Babesia bovis and is considered a vaccine candidate given that antibodies against it are able to partially block in vitro invasion of bovine erythrocytes. Despite this, no study to date has confirmed the target cell binding properties of the full MSA-1 or its fragments. This research has thus been focused on identifying protein regions playing a role in erythrocyte attachment, based on genetic diversity and natural selection analysis. Two regions under functional constraint (nucleotides 134-428 and 464-629) having a preponderance of negatively-selected signals were identified in silico. Three non-overlapping peptides derived from functionally constraint regions (42422 (39PEGSFYDDMSKFYGAVGSFD58), 42424 (91NALIKNNPMIRPDLFNATIV110) and 42426 (150TDIVEEDREKAVEYFKKHVY169)) were able to specifically bind to a sialoglycoprotein located on the bovine erythrocyte surface as confirmed by sensitive and specific peptide-cell interaction competition assays using both enzymatically treated and untreated red blood cells. Interestingly, it was predicted that peptides 42422 and 42426 have a helical structure and conserved motifs in all strain/isolates. These findings provide evidence, for the first time, related to B. bovis MSA-1 short regions used by the parasite in erythrocyte binding which could be predicted using natural selection analysis. Future work focused on evaluating these peptides' antigenic ability during natural infection, and their ability to induce protection in immunisation assays are needed to confirm their usefulness as synthetic vaccine candidates.


Assuntos
Babesia bovis , Babesiose , Doenças dos Bovinos , Bovinos , Animais , Babesia bovis/genética , Proteína 1 de Superfície de Merozoito/genética , Antígenos de Protozoários , Eritrócitos/parasitologia , Doenças dos Bovinos/parasitologia , Babesiose/parasitologia , Proteínas de Protozoários
2.
Front Genet ; 13: 772885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186024

RESUMO

The major histocompatibility complex (MHC) exerts great influence on responses to infectious diseases and vaccination due to its fundamental role in the adaptive immune system. Knowledge about MHC polymorphism distribution among breeds can provide insights into cattle evolution and diversification as well as population-based immune response variability, thus guiding further studies. Colombian Simmental and Simbrah cattle's BoLA-DRB3 genetic diversity was compared to that of taurine and zebuine breeds worldwide to estimate functional diversity. High allele richness was observed for Simmental and Simbrah cattle; nevertheless, high homozygosity was associated with individual low sequence variability in both the ß1 domain and the peptide binding region (PBR), thereby implying reduced MHC-presented peptide repertoire size. There were strong signals of positive selection acting on BoLA-DRB3 in all populations, some of which were poorly structured and displayed common alleles accounting for their high genetic similarity. PBR sequence correlation analysis suggested that, except for a few populations exhibiting some divergence at PBR, global diversity regarding potential MHC-presented peptide repertoire could be similar for the cattle populations analyzed here, which points to the retention of functional diversity in spite of the selective pressures imposed by breeding.

3.
Sci Rep ; 11(1): 4340, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619347

RESUMO

Analysing pig class II mayor histocompatibility complex (MHC) molecules is mainly related to antigen presentation. Identifying frequently-occurring alleles in pig populations is an important aspect to be considered when developing peptide-based vaccines. Colombian creole pig populations have had to adapt to local conditions since entering Colombia; a recent census has shown low amounts of pigs which is why they are considered protected by the Colombian government. Commercial hybrids are more attractive regarding production. This research has been aimed at describing the allele distribution of Colombian pigs from diverse genetic backgrounds and comparing Colombian SLA-DRB1 locus diversity to that of internationally reported populations. Twenty SLA-DRB1 alleles were identified in the six populations analysed here using sequence-based typing. The amount of alleles ranged from six (Manta and Casco Mula) to nine (San Pedreño). Only one allele (01:02) having > 5% frequency was shared by all three commercial line populations. Allele 02:01:01 was shared by five populations (around > 5% frequency). Global FST indicated that pig populations were clearly structured, as 20.6% of total allele frequency variation was explained by differences between populations (FST = 0.206). This study's results confirmed that the greatest diversity occurred in wild boars, thereby contrasting with low diversity in domestic pig populations.


Assuntos
Variação Genética , Genética Populacional , Antígenos de Histocompatibilidade Classe II/genética , Alelos , Animais , Cruzamento , Colômbia , Frequência do Gene , Haplótipos , Filogenia , Filogeografia , Sus scrofa/genética , Suínos
4.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562650

RESUMO

Plasmodium parasites' invasion of their target cells is a complex, multi-step process involving many protein-protein interactions. Little is known about how complex the interaction with target cells is in Plasmodium vivax and few surface molecules related to reticulocytes' adhesion have been described to date. Natural selection, functional and structural analysis were carried out on the previously described vaccine candidate P. vivax merozoite surface protein 10 (PvMSP10) for evaluating its role during initial contact with target cells. It has been shown here that the recombinant carboxyl terminal region (rPvMSP10-C) bound to adult human reticulocytes but not to normocytes, as validated by two different protein-cell interaction assays. Particularly interesting was the fact that two 20-residue-long regions (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434) were able to inhibit rPvMSP10-C binding to reticulocytes and rosette formation using enriched target cells. These peptides were derived from PvMSP10 epidermal growth factor (EGF)-like domains (precisely, from a well-defined electrostatic zone) and consisted of regions having the potential of being B- or T-cell epitopes. These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Reticulócitos/parasitologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Sítios de Ligação/genética , Sequência Conservada , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Genes de Protozoários , Humanos , Técnicas In Vitro , Malária Vivax/sangue , Malária Vivax/parasitologia , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Domínios Proteicos/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulócitos/metabolismo , Eletricidade Estática
5.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450807

RESUMO

Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein's surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.


Assuntos
Eritrócitos/metabolismo , Ligantes , Receptores de Superfície Celular/metabolismo , Animais , Bovinos , Eritrócitos/imunologia , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Relação Estrutura-Atividade
6.
Front Genet ; 10: 1293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998362

RESUMO

Bovine leukocyte antigens (BoLA) have been used as disease markers and immunological traits in cattle due to their primary role in pathogen recognition by the immune system. A higher MHC allele diversity in a population will allow presenting a broader peptide repertoire. However, loss of overall diversity due to domestication process can decrease a population's peptide repertoire. Within the context of zebu and taurine cattle populations, BoLA-DRB3 genetic diversity in Spanish Morucha and Colombian Normande cattle was analyzed and an approach to estimate functional diversity was performed. Sequence-based typing was used for identifying 29, 23, 27, and 28 alleles in Spanish Morucha, Nariño-, Boyacá-, and Cundinamarca-Normande cattle, respectively. These breeds had remarkably low heterozygosity levels and the Hardy-Weinberg principle revealed significant heterozygote deficiency. FST and DA genetic distance showed that Colombian Normande populations had greater variability than other phenotypically homogeneous breeds, such as Holstein. It was also found that Spanish Morucha cattle were strongly differentiated from other cattle breeds. Spanish Morucha had greater divergence in the peptide-binding region regarding other cattle breeds. However, peptide-binding region covariation indicated that the potential peptide repertoire seemed equivalent among cattle breeds. Despite the genetic divergence observed, the extent of the potential peptide repertoire in the cattle populations studied appears to be similar and thus their pathogen recognition potential should be equivalent, suggesting that functional diversity might persist in the face of bottlenecks imposed by domestication and breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...